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Abstract. The gauge equivalence between the Manin–Radul and Laberge–Mathieu super KdV
hierarchies is revisited. Apart from the Inami–Kanno transformation, we show that there
is another gauge transformation which also possesses the canonical property. We explore
the relationship of these two gauge transformations from the Kupershmidt–Wilson theorem
viewpoint and, as a by-product, obtain the Darboux–Bäcklund transformation for the Manin–
Radul super KdV hierarchy. The geometrical intepretation of these transformations is also briefly
discussed.

1. Introduction

Recently, Morosi and Pizzocchero [1–3] discussed the gauge equivalence of the Manin–
Radul (MR) [4] and Laberge–Mathieu (LM) [5] super Korteweg–de Vries (sKdV) hierarchies
from a bi-Hamiltonian and Lie superalgebraic viewpoint. This approach can be viewed as a
superextension of the Drinfeld–Sokolov method [6] for building a KdV-type hierarchy for a
simple Lie algebra. They showed [1] that the gauge transformation proposed by Inami and
Kanno (IK) [7] not only preserves the Lax equations but also the bi-Hamiltonian structures
corresponding to the MR and LM hierarchies. In particular, they provided a geometrical
meaning of the IK transformation which rests on the natural fibred structure appearing in
the bi-Hamiltonian reduction of loop superalgebras.

In this paper, in addition to the IK transformation, we find that there is another gauge
transformation between the MR and LM sKdV hierarchies preserving the Lax equations. We
investigate the canonical property of this gauge transformation and discuss the connection
to the IK transformation from the Kupershmidt–Wilson theorem [8] viewpoint. As a by-
product, the Darboux–B̈acklund transformation (DBT) for the MR sKdV hierarchy can be
constructed from these two gauge transformations. The geometrical interpretation of these
two transformations is also briefly discussed.

Our paper is organized as follows. In section 2 the bi-Hamiltonian structures of the
MR and LM sKdV hierarchies are briefly reviewed. In section 3 we introduce a gauge
transformation between these two hierarchies and investigate its canonical property. Then in
section 4 we discuss the relationship between this transformation and the IK transformation
from the KW theorem viewpoint. Concluding remarks are presented in section 5.
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2. Bi-Hamiltonian structures of the MR and LM sKdV hierarchies

The MR sKdV hierarchy was defined originally from the reduction of the MR super
Kadomtsev–Petviashvili hierarchy [4]. It has the following Lax equation:

∂nL
MR = [BMRn , LMR] (2.1)

with

LMR = ∂2− φD + a (2.2)

BMRn = (−4)n(LMR)n+1/2
+ (2.3)

where the superderivativeD ≡ ∂θ + θ∂ satisfiesD2 = ∂, θ is the Grassmann variable
(θ2 = 0) which, together with the even variablex ≡ t1, define the(1|1) superspace [9]
with coordinate(x, θ). The formal inverse ofD is introduced byD−1 = θ + ∂θ∂−1,
which satisfiesDD−1 = D−1D = 1. The coefficientsφ = φ(x, θ) and a = a(x, θ) are
odd and even superfields on(1|1) superspace, respectively. We denote the action of the
superderivativeD on the superfieldf by (Df ).

The bi-Hamiltonian structure of the MR hierarchy has been obtained in [10] as

2MR
1 :

(
δa

δφ

)
→
(
ȧ

φ̇

)
=
(−D∂ + φ −∂
−∂ 0

)(
δa

δφ

)
(2.4)

2MR
2 :

(
δa

δφ

)
→
(
ȧ

φ̇

)
=
(
Paa Paφ

Pφa Pφφ

)(
δa

δφ

)
(2.5)

where the operatorsPij are given by

Paa = D∂3− 3φ∂2+ 4aD∂ + (2(Da)− 3φx)∂ + 2axD + 3φ(Dφ)

+ (Da)x − 4aφ − φxx + φD−1(Da)− (Da)D−1φ

−φD−1φD−1φ − φD−1φx + φxD−1φ (2.6)

Paφ = ∂3− 2φD∂ + 4a∂ − φxD + 2ax + φD−1(Dφ) (2.7)

Pφa = ∂3+ 2φD∂ + (4a − 2(Dφ))∂ + φx + 2ax − (Dφ)x + (Dφ)D−1φ (2.8)

Pφφ = 4φ∂ + 2φx. (2.9)

Here, following the notation of [1], the phase space for the MR theory is a pairm = (a, φ).
A tangent vector at a pointm is denoted byṁ = (ȧ, φ̇) and a cotangent vector as a pair
δm = (δa, δφ) whereȧ andδφ are even superfields, whereasφ̇ andδa are odd. The inner
product is defined by〈δm, ṁ〉 ≡ ∫ dx dθ (δaȧ + δφφ̇).

For the LM hierarchy, the Lax equation is given by

∂nL
LM = [BLM

n , LLM ] (2.10)

with

LLM = ∂2− 2u∂ − ((Du)+ τ)D (2.11)

BLM
n = (−4)n(LLM )

n+ 1
2

>0 (2.12)

whereµ = µ(x, θ) and τ = τ(x, θ) are even and odd superfields, respectively. It should
be mentioned that the LM theory discussed here is obtained from theN = 2, α = −2 LM
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sKdV theory [5]. The bi-Hamiltonian structure of the LM hierarchy is also taken from [10],
in component form, as [1]

(2LM
1 )−1 :

(
u̇

τ̇

)
→
(
δu

δτ

)
=
(

D −D−1τD−1 u∂−1+D−1uD−1

∂−1u+D−1uD−1 D−1− ∂−1τ∂−1

)(
u̇

τ̇

)
(2.13)

2LM
2 :

(
δu

δτ

)
→
(
u̇

τ̇

)
=
( −D∂ + τ 2u∂ − (Du)D + 2ux

2u∂ − (Du)D + ux −D∂2+ 3τ∂ + (Dτ)D + 2τx

)(
δu

δτ

)
(2.14)

where, similarly, the phase space of the LM theory can be represented as a set of pairs
n = (u, τ ). Then the tangent and cotangent vectors at a pointn are represented asṅ = (u̇, τ̇ )
and δn = (δu, δτ ), respectively, wherėu and δτ are even, whileδu and τ̇ are odd. The
inner product is defined by〈δn, ṅ〉 ≡ ∫

dx dθ (δuu̇ + δτ τ̇ ). More features about the bi-
Hamiltonian structures of these two hierarchies have been tabulated in [1].

3. Gauge transformations

In [7], Inami and Kanno showed that the MR sKdV hierarchy can be related to the LM
sKdV hierarchy via the following gauge transformation:

LMR
1 = S−1

1 LLMS1 S1 = exp

(∫ x

u

)
(3.1)

which leads to

φ1 = (Du)+ τ a1 = ux − u2− ((Du)+ τ)(D−1u). (3.2)

They also showed that the Lax equation (2.1) of the LM theory is mapped to the Lax
equation (2.10) of the MR theory under such a transformation. Hence equations (3.2)
provide a gauge equivalence between these two hierarchies and now is referred to as the
Inami–Kanno transformation. It can be shown thatS−1

1 is an eigenfunction of the MR sKdV
hierarchy, i.e.∂nS

−1
1 = (BMR

n S−1
1 ). Furthermore, Morosi and Pizzocchero [1] showed that

the IK transformation is a canonical map, in the sense that the bi-Hamiltonian structure
of the LM sKdV hierarchy is mapped to the bi-Hamiltonian structure of the MR sKdV
hierarchy. That is

S
′†
1 (2

MR
1 )−1S ′1 = (2LM

1 )−1 (3.3)

S ′1(2
LM
2 )S

′†
1 = (2MR

2 ) (3.4)

where S ′1 and S ′†1 are respectively the linearized map and the transport map of the IK
transformation, which satisfy

〈S ′†1 δm, ṅ〉 = 〈δm, S ′1ṅ〉. (3.5)

In fact, we can construct another transformation between the MR and LM sKdV
hierarchies as follows:

LMR
2 = S−1

2 LLMS2 S2 = D−1S1. (3.6)

Then a simple calculation leads to

φ2 = (Du)− τ a2 = −u2− (Dτ)− ((Du)− τ)(D−1u). (3.7)

It can be shown that the Lax equations are preserved under such transformation. Hence the
transformation (3.6) also provides a gauge equivalence of the MR and LM sKdV hierarchies.
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Similarly, we can show that, in this case,∂nS1 = −((BMR
n )∗S1). That meansS1 is an adjoint

eigenfunction of the MR sKdV hierarchy.
Next, let us discuss the canonical property of the transformation (3.6). From

equations (3.7), the linearized mapS ′2 and its adjoint mapS ′†2 can be derived as follows:

S ′2 =
(−2u+ (D−1u)D − φ2D

−1 −D − (D−1u)

D −1

)
(3.8)

S
′†
2 =

(−2u+D−1φ2−D(D−1u) −D
−D + (D−1u) −1

)
. (3.9)

After a straightforward but tedious calculation, the Poisson structures transform as

S
′†
2 (2

MR
1 )−1S ′2 = −(2LM

1 )−1 (3.10)

S ′2(2
LM
2 )S

′†
2 = −(2MR

2 ) (3.11)

which, comparing with (3.3) and (3.4), acquire a minus sign. It seems that this result
contradicts the property of preserving the Lax equations. However, it is not the case. Since
the parity of the gauge operatorS2 is odd, the Hamiltonian of the LM hierarchyH LM

n =
str((LLM )n+1/2) (up to a multiplicative constant) then is transformed toHMR

n = −H LM
n due

to the following property:

str(PQ) = (−1)|P ||Q|str(QP ) (3.12)

whereP andQ are any super-pseudo-differential operators with gradings|P | and |Q|,
respectively. Therefore, the gauge equivalence is compatible with the canonical property
under the transformation triggered by the gauge operatorS2.

Based on the above discussions, the canonical property of the gauge transformations
between the MR and LM sKdV hierarchies can be summarized as follows:

S
′†
i (2

MR
1 )−1S ′i = (−)|Si |(2LM

1 )−1 (3.13)

S ′i (2
LM
2 )S

′†
i = (−1)|Si |(2MR

2 ) i = 1, 2 (3.14)

which seems to be the supersymmetric generalization of the bosonic case [11].

4. The Bäcklund transformation and the Kupershmidt–Wilson theorem

From the IK transformation, we know that if we have a solution{u, τ } of the LM
sKdV hierarchy, then equations (3.2) gives a solution{φ1, a1} of the MR sKdV
hierarchy. Sometimes, such a transformation of one hierarchy to another is called a Miura
transformation. On the other hand, equation (3.7) also gives another solution{φ2, a2} of the
MR sKdV hierarchy. Hence a Darboux–Bäcklund transformation (DBT) of the MR sKdV
hierarchy to itself can be constructed from these two gauge transformations. In other words,
let {φ1, a1} be a solution of the MR sKdV hierarchy, then solving{u, τ } from (3.2) and
substituting it in (3.7) we get

φ2 = −φ1− 2(D3 ln S−1
1 ) (4.1)

a2 = a1− (Dφ1)+ 2(D ln S−1
1 )(φ1+ (D3 ln S−1

1 )) (4.2)

which is simply the DBT derived in [12]. The action of the gauge operatorsS1 andS2 for
the MR and LM sKdV hierarchies are shown as follows:

LM
S1↙ ↘S2

MR1←−DBT−→MR2.

(4.3)
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In what follows, we wish to discuss the relationship in (4.3) from the KW theorem
viewpoint, in which the gauge operatorS2 plays an important and unambiguous role. From
(2.11), the Lax operatorLLM can be factorized as follows [7]:

LLM = ∂2− 2u∂ − ((Du)+ τ)D

= (D −81)(D −81−82)(D −82)D (4.4)

whereu andτ can be expressed in terms of the superfields8i as

u = 1
2[(D81)+ (D82)−8182] (4.5)

τ = 1
2[82x −81x − (D81)82−81(D82)]. (4.6)

We notice that the second Hamiltonian structure of the LM theory can be simplified under
the factorization (4.4). From equations (4.5) and (4.6), it can be straightforwardly shown
that

2LM
2 =

[
∂(u, τ )

∂(81,82)

](
0 2D

2D 0

)[
∂(u, τ )

∂(81,82)

]†
(4.7)

where the Fŕechet derivative can be calculated as[
∂(u, τ )

∂(81,82)

]
=
( − 1

2(D +82) − 1
2(D −81)

− 1
2(∂ +82D + (D82))

1
2(∂ −81D − (D81))

)
(4.8)

and
[
∂(u, τ )/∂(81,82)

]†
is its formal adjoint.

Now applying the IK transformation to (4.4), we obtain the multiplicative form of the
Lax operatorLMR

1 as

LMR
1 = (D −91)(D −92)(D −93)(D −94) (4.9)

where the superfields9i are given by

91 = 1
2((D

−18182)+81−82) (4.10)

92 = 1
2((D

−18182)+81+82) (4.11)

93 = 1
2((D

−18182)+82−81) (4.12)

94 = 1
2((D

−18182)−81−82). (4.13)

Note that only two of them are independent variables. The Lax equation forLMR
1 then can

be expressed in terms of the hierarchy equations of9i .
On the other hand, if we apply the gauge transformation (3.6) to (4.4), the Lax operator

LMR
2 is then factorized as

LMR
2 = (D −94)(D −91)(D −92)(D −93) (4.14)

which differs fromLMR
1 only by a cyclic permutation:91 7→ 92, . . . , 94 7→ 91. Such

cyclic permutation does not change the hierarchy equations of9i [13] and hence generates
the DBT for the MR sKdV hierarchy itself.
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5. Concluding remarks

We have shown that, in addition to the IK transformation, there is another gauge
transformation between the MR and LM sKdV hierarchies. We have investigated the
canonical property of this new gauge transformation and have shown that it depends on
the grading (or parity) of the gauge operator. Using this new gauge transformation and the
IK transformation we re-derived the DBT for the MR sKdV hierarchy. We have also given
an interpretation of this new gauge transformation from the KW theorem viewpoint.

Finally, we would like to remark that the geometrical interpretation of the IK
transformation discussed in [1] can also be applied to the new gauge transformation. The
only thing we have to do is to choose a different cross section6̂, which is matrix in the
fibre overm of the form

6̂(m) =


0 0 1 0

(Du)− τ 0 0 1

−2u −1 0 0

0 0 0 0

 . (5.1)

Then the transformation (3.7) comes out naturally from a general equation derived in [1]
which describes the quotient space in the bi-Hamiltonian reduction of a loop superalgebra.
Since the IK transformation was also derived from the same equation, thus equations (3.2)
and (3.7) can be treated on an equal footing in the bi-Hamiltonian framework. We hope such
an approach can be generalized to other super integrable systems. Work in this direction is
still in progress.
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